From \mathbb{P} to \mathbb{Q} : Girsanov vs NNS.rescale()

A production-ready alternative to change of measure

Fred Viole @OVVOLabs

November 21, 2025

One Rule to Price Them All

The Fundamental Pricing Identity

$$\mathbb{E}^{\mathbb{Q}}[S_T] = S_0 e^{rT}$$

Global Parameters Used: $S_0 = 100, r = 0.05, \mu = 0.10, \sigma = 0.2, T = 1$

Target forward: $S_0 e^{rT} = 105.1271$

- Why? Under Q, the stock is a martingale after discounting.
- Implication: No arbitrage \implies expected growth = risk-free rate.
- Consequence: All derivatives priced via risk-neutral expectation.
- **Key Insight**: You do not need μ to price only r, σ , S_0 .

The Two Worlds: \mathbb{P} vs \mathbb{Q}

Real World P

- Drift: $\mu = 0.1$ (investor belief)
- Volatility: $\sigma = 0.2$
- Use:
 - Risk management
 - VaR, stress testing
 - P&L simulation
 - Capital allocation

One model, two measures:

- P: What might happen
- Q: What must be priced

Discussion Point:

"Can you use \mathbb{P} -simulated paths to price? Yes — but only if you reweight or rescale to \mathbb{Q} ."

Risk-Neutral Q

- Drift: r = 0.05 (by construction)
- Volatility: $\sigma = 0.2$ (unchanged)
- Use:
 - Derivative pricing
 - XVA (CVA, FVA)
 - Hedging
 - Model calibration

Girsanov: Change of Measure

From Real Drift to Risk-Neutral Drift

$$\underbrace{dS_t = \mu S_t dt + \sigma S_t dW_t^{\mathbb{P}}}_{\text{Real world } \mathbb{P}} \xrightarrow{\text{Girsanov}} \underbrace{dS_t = rS_t dt + \sigma S_t dW_t^{\mathbb{Q}}}_{\text{Risk-neutral } \mathbb{Q}}$$

Radon-Nikodym derivative (weight):

$$\left\lfloor \frac{d\mathbb{Q}}{d\mathbb{P}} = \exp\left(-\lambda W_T^{\mathbb{P}} - \frac{1}{2}\lambda^2 T\right) \right\rfloor, \quad \lambda = \frac{\mu - r}{\sigma}$$

- What is λ? The market price of risk how much extra return per unit volatility.
- Intuition: Paths with too much upside in \mathbb{P} get downweighted in \mathbb{Q} .
- ullet Volatility unchanged: σ is the same only drift is adjusted.

Girsanov: Tiny Numeric (2 paths)

Results:

Weights: 1.1421, $0.8104 \rightarrow Weighted mean$: 107.4521

ST	Weight
95	1.1421
125	0.8104

Path 95: upweighted

Path 125: downweighted

• Target: $S_0 e^{rT} = 105.1271$

Key Takeaway: "We don't change the paths — we change their importance."

NNS.rescale: Direct Mean Enforcement

One line: NNS.rescale(P, ...)

Monte Carlo: Shared Brownian Paths

```
set.seed(1234); n <- 1e5; K <- 100
dW <- rnorm(n, 0, sqrt(T))
ST_Q_direct <- S0 * exp((r - 0.5*sigma^2)*T + sigma*dW)
ST_P <- S0 * exp((mu - 0.5*sigma^2)*T + sigma*dW)</pre>
```

Same $dW \rightarrow \text{fair comparison}$

Monte Carlo: Pricing

```
ST_Q_nns <- NNS.rescale(ST_P, a=S0, b=r, method="riskneutral",
                        T=T, type="Terminal")
W_T \leftarrow (log(ST_P/S0) - (mu - 0.5*sigma^2)*T)/sigma
lambda <- (mu-r)/sigma</pre>
W \leftarrow exp(-lambda*W_T - 0.5*lambda^2*T)
price direct <- exp(-r*T)*mean(pmax(ST 0 direct - K. 0))</pre>
price_nns <- exp(-r*T)*mean(pmax(ST_0_nns - K, 0))
price_gir <- exp(-r*T)*weighted.mean(pmax(ST_P - K, 0), w)</pre>
ess_gir <- round((sum(w)^2) / sum(w^2))
c(direct = price_direct, nns = price_nns, gir = price_gir, ess = ess_gir)
#>
       direct
                       nns
                                  gir
                                                ess
#>
    10.48537 10.44869 10.49028 93962.00000
```

Results: Accuracy & Efficiency

	$Direct\ \mathbb{Q}$	NNS	Girsanov
Call price	10.4853712	10.4486858	10.4902804
Efficiency	100,000	100,000	93, 962

Black-Scholes (analytic): 10.451

Verification

```
cat(sprintf("Target: %.6f\n", S0*exp(r*T)))
#> Target: 105.127110
cat(sprintf("Direct Q: %.6f\n", mean(ST_Q_direct)))
#> Direct Q: 105.187609
cat(sprintf("NNS: %.6f\n", mean(ST_Q_nns)))
#> NNS: 105.127110
cat(sprintf("Girsanov: %.6f\n", weighted.mean(ST_P, w)))
#> Girsanov: 105.194594
```

All match target within MC error.

Constraint Families: From \mathbb{P} to \mathbb{Q}

Two Valid Constraints

- Terminal: $\mathbb{E}[S_T^{\mathbb{Q}}] = S_0 e^{rT} \to \text{Vanilla pricing}$
- Discounted: $\mathbb{E}[e^{-rt}S_t^{\mathbb{Q}}] = S_0 \to \text{True martingale}$

Terminal at Grid Points

$$\mathbb{E}[S_{t_k}^{\mathbb{Q}}] = S_0 e^{rt_k}$$

- → Valid for multi-maturity vanillas
- \rightarrow Not a martingale

Discounted at Grid Points

$$\mathbb{E}[e^{-rt_k}S_{t_k}^{\mathbb{Q}}]=S_0$$

- → True discrete martingale
- → Required for path-dependent

Dynamic Rescaling Options:

- type = "Terminal" at each $t_k \rightarrow$ correct forwards
- type = "Discounted" at each $t_k \rightarrow$ correct martingale

The NNS, rescale Mechanism: Distributional Transformation

From \mathbb{P} -Paths to \mathbb{O} -Distribution

$$S_T^{\mathbb{Q}} = e^{ heta} \cdot S_T^{\mathbb{P}}, \quad heta = \log \left(rac{S_0 e^{rT}}{\mathbb{E}^{\mathbb{P}}[S_T^{\mathbb{P}}]}
ight)$$

For GBM: Achieves Exact Q-Distribution

$$S_T^{\mathbb{Q}} \stackrel{d}{=} S_0 \exp\left(\left(r - \frac{\sigma^2}{2}\right)T + \sigma W_T^{\mathbb{Q}}\right)$$

Why This Works

- Distributionally Exact for GBM
- No-Arbitrage by Design: $\mathbb{E}^{\mathbb{Q}}[S_T] = S_0 e^{rT}$
- **Empirical Convergence**: Sample mean $\rightarrow S_0 e^{\mu T}$
- Zero Variance Loss: Deterministic, full ESS

12 / 21

GBM Exactness: Why NNS.rescale Works Perfectly

Distributional Equivalence Theorem

Scaling \mathbb{P} -paths by $e^{(r-\mu)T}$ yields the exact \mathbb{Q} -distribution:

$$S_T^{\mathbb{P}} \cdot e^{(r-\mu)T} \stackrel{d}{=} S_0 \exp\left(\left(r - \frac{\sigma^2}{2}\right)T + \sigma W_T^{\mathbb{Q}}\right)$$

NNS.rescale Implements This

$$heta o (r-\mu)T$$
 as $n o \infty$ \Rightarrow $e^{ heta} o e^{(r-\mu)T}$

Key Insight

- Empirical → Theoretical scaling
- Same Q-distribution without measure theory
- Perfect pricing up to MC error

Distributional Equivalence: Correct Proof

Theorem

For GBM:

$$S_T^{\mathbb{P}} \cdot e^{(r-\mu)T} \stackrel{d}{=} S_T^{\mathbb{Q}}$$

Proof via Distribution Matching

$$S_T^{\mathbb{P}} = S_0 \exp\left(\left(\mu - \frac{\sigma^2}{2}\right)T + \sigma W_T^{\mathbb{P}}\right)$$

$$S_T^{\mathbb{P}} \cdot e^{(r-\mu)T} = S_0 \exp\left(\left(r - \frac{\sigma^2}{2}\right)T + \sigma W_T^{\mathbb{P}}\right)$$

$$S_T^{\mathbb{Q}} = S_0 \exp\left(\left(r - \frac{\sigma^2}{2}\right)T + \sigma W_T^{\mathbb{Q}}\right)$$

Since $W_{\tau}^{\mathbb{P}} \stackrel{d}{=} W_{\tau}^{\mathbb{Q}} \sim \mathcal{N}(0, T)$, \Rightarrow distributions are identical.

GBM Exactness: Two Paths, One Distribution

Equivalent Constructions

Q-Simul	

$$S_0 \exp\left(\left(r - \frac{\sigma^2}{2}\right)T + \sigma W_T^{\mathbb{Q}}\right)$$

NNS.rescale

$$S_T^{\mathbb{P}} \cdot e^{(r-\mu)T}$$

Same distribution

Same distribution

The Truth

- Distributional equivalence under GBM
- Empirical convergence to correct scaling
- Computational edge: No re-simulation, full efficiency
- Conceptual clarity: Transform outcomes, not measures

Discrete-Grid Martingale via Dynamic Rescaling

Construction: At each t_k :

```
S_{t_k}^{\mathbb{Q}} \leftarrow \text{NNS.rescale}(\text{discounted } S, \text{type}=\text{"Discounted"})
```

Enforces discounted ensemble mean $= S_0$.

```
n steps <- 100: dt <- T/n steps: n paths <- 10000
paths <- matrix(NA, n steps+1, n paths): paths[1.] <- S0
drift <- (r - 0.5*sigma^2)*dt; vol <- sigma*sqrt(dt)
for(i in 1:n steps){
 inc <- rnorm(n_paths, drift, vol)</pre>
 next_p <- paths[i,] * exp(inc)</pre>
 t i <- i*dt
 disc \leftarrow next_p * exp(-r*t_i)
 disc_rescaled <- NNS.rescale(disc, a=S0, b=r, method="riskneutral",</pre>
                               T=t i, type="Discounted")
 paths[i+1,] <- disc_rescaled * exp(r*t_i)
disc_means <- rowMeans(exp(-r*seq(0,T,by=dt)) * paths)
c(head=disc_means[1], mid=disc_means[51], tail=disc_means[101])
#> head mid tail
#> 100 100 100
```

Dynamic Rescaling: Ensemble Means

Time	Theoretical	Standard	Rescaled
0	100	100	100
0.25	101.2578	101.131	101.2578
0.5	102.5315	102.4051	102.5315
0.75	103.8212	103.8043	103.8212
1	105.1271	105.0349	105.1271

Dynamic Rescaling: Statistics

Metric	Value
Mean Volatility (Normal)	0.199539
Mean Volatility (Rescaled)	0.199529
Terminal Mean (Normal)	105.034938
Terminal Mean (Rescaled)	105.12711
Terminal Variance (Normal)	450.182022
Terminal Variance (Rescaled)	450.972466

Takeaway: Three Roads from \mathbb{P} to \mathbb{Q}

All Roads Lead to the Same Price

$Direct\ \mathbb{Q}$	Girsanov	NNS.rescale
Simulate with drift <i>r</i>	Reweight \mathbb{P} -paths	Rescale \mathbb{P} -paths
Simple	Elegant	Exact + Efficient
MC noise: σ/\sqrt{n}	ESS \downarrow as $ \mu-r \uparrow$	Full ESS, zero bias

Mathematical Equivalence (GBM)

$$\underbrace{S_T^{\mathbb{P}} \cdot e^{(r-\mu)T}}_{\text{Exact multiplier}} \stackrel{d}{=} \underbrace{S_0 \exp\left((r - \frac{\sigma^2}{2})T + \sigma W_T^{\mathbb{Q}}\right)}_{\text{Direct } \mathbb{Q}\text{-simulation}}$$

NNS.rescale ightarrow empirically discovers $e^{(r-\mu)T}$

Decision Guide: Choose Your Weapon

Use NNS.rescale When...

- Vanilla pricing under GBM
- You want maximum MC efficiency
- Stability and speed matter (production)
- You already simulate under P (risk systems)

Use Dynamic Rescaling When...

- Path-dependent exotics (Asians, barriers)
- Multi-maturity calibration
- Need true discrete martingale: type = "Discounted"

Raw .Rnw File Download

