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Introduction to Partial
Moments



Q. What are partial moments?
A. The elements of variance.
Univariate:

• Grounded in probability-weighted integration and rigorous measure theory

• Time-series or cross-sectional
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Partial Moment Equivalences
Mean

library(NNS)1

set.seed(123); x = rnorm(100); y = rnorm(100)2

3

mean(x)4

[1] 0.09040591

UPM(degree = 1, target = 0, variable = x) - LPM(degree = 1, target = 0, variable =1

[1] 0.09040591
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Variance
# Sample Variance (base R):1

var(x)2

[1] 0.8332328

# Sample Variance:1

mu_x = mean(x)2

(UPM(2, mu_x, x) + LPM(2, mu_x, x)) * (length(x) / (length(x) - 1))3

[1] 0.8332328

# Population Adjustment of Sample Variance (base R):1

var(x) * ((length(x) - 1) / length(x))2

[1] 0.8249005

# Population Variance:1

UPM(2, mu_x, x) + LPM(2, mu_x, x)2

[1] 0.8249005

# Variance is also the co-variance of itself:1

{(Co.LPM(degree_lpm = 1, x = x, y = x, target_x = mu_x, target_y = mu_x)2

+ Co.UPM(degree_upm = 1, x, x, mu_x, mu_x)3

- D.LPM(degree_lpm = 1, degree_upm = 1, x, x, mu_x, mu_x)4

- D.UPM(1, 1, x, x, mu_x, mu_x))}5

[1] 0.8249005
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Skewness

Kurtosis

PerformanceAnalytics::skewness(x)1

[1] 0.06049948

((UPM(3, mu_x, x) - LPM(3, mu_x, x)) / (UPM(2, mu_x, x) + LPM(2, mu_x, x))^(3/2))1

[1] 0.06049948

PerformanceAnalytics::kurtosis(x)1

[1] -0.161053

((UPM(4, mu_x, x) + LPM(4, mu_x, x)) / (UPM(2, mu_x, x) + LPM(2, mu_x, x))^2) - 31

[1] -0.161053
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More Equivalences
LPM degree 0 is the eCDF for any distribution

LPM.CDF = LPM(degree = 0, target = sort(x), variable = x)1

2

plot(ecdf(x))3

points(sort(x), LPM.CDF, col='red')4

legend('left', legend = c('ecdf','LPM.CDF'), fill=c('black','red'), border=NA, bty=5
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More CDFs and PDFs

Still empirical CDFs, all we’ve done is increase the degree



Comparing CDFs Led to Stochastic Dominant
Efficient Sets



Multivariate



CLPM(degree, target, x, y) =
1
T

∑
t=1
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degree[max(0, target − )]yt

degree
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DLPM(degree, target, x, y) =
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T
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[max(0, − target)]xt
degree[max(0, target − )]yt
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DUPM(degree, target, x, y) =
1
T
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t=1

T

[max(0, target − )]xt
degree[max(0, − target)]yt

degree



Covariance Equivalence



Copulas
# Data1

set.seed(123); x = rnorm(100); y = rnorm(100); z = expand.grid(x, y)2

3

# Plot4

rgl::plot3d(z[,1], z[,2], Co.LPM(0, z[,1], z[,2], z[,1], z[,2]), col = "red")5

6

# Uniform values7

u_x = LPM.ratio(0, x, x); u_y = LPM.ratio(0, y, y); z = expand.grid(u_x, u_y)8

9

# Plot10

rgl::plot3d(z[,1], z[,2], Co.LPM(0, z[,1], z[,2], z[,1], z[,2]), col = "blue")11
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Partitioning Led to:
Nonlinear Correlation & Dependence

Compared to Mutual Information, Distance Correlation,
Chatterjee’s Xi…



Partitioning Also Led to:
Nonlinear Regression

Offers dynamic bandwidth solution



Multivariate Regression

• Similar to kNN regression… cluster centroids instead of
observations

• -fold cross-validation for number of centroidsk



Very good at extrapolation



Nonlinear Regression Led to Time-Series
Forecasting:



Time-Series Forecasting with Nonlinear
Regression

and a multivariate extension via a nonparametric vector
autoregression!

require(forecast); data(taylor)1

2

NNS.ARMA(taylor, h = 336, training.set = length(taylor)-336, 3

seasonal.factor = 336, plot = TRUE, method = 'nonlin')4
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Generative and Synthetic Data
Maximum Entropy Bootstrap for Time-Series
• Specify a rho or drift for any replicate… ensures

 correlation spectrum is covered.

• Standard IID MC or block bootstrap cannot accomplish this.

ρ ∈ [−1, 1]



Static Dri�
boots = NNS.meboot(AirPassengers, reps = 100, rho = seq(-1, 1, .25), 1

xmin = 0, target_drift_scale = 1)2

3

matplot(do.call(cbind, boots["replicates", ]), type = "l")4

lines(1:length(AirPassengers), AirPassengers, lwd = 5, col = "red")5
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Specify a Dri� for Replicates (RfR perhaps)
boots = NNS.meboot(AirPassengers, reps = 100, rho = seq(-1, 1, .25), 1

xmin = 0, target_drift = 1:4)2

3

matplot(do.call(cbind, boots["replicates", ]), type = "l")4

lines(1:length(AirPassengers), AirPassengers, lwd = 5, col = "red")5

http://localhost:6148/?view=print
http://localhost:6148/?view=print
http://localhost:6148/?view=print
http://localhost:6148/?view=print
http://localhost:6148/?view=print
http://localhost:6148/?view=print
http://localhost:6148/?view=print
http://localhost:6148/?view=print
http://localhost:6148/?view=print
http://localhost:6148/?view=print
http://localhost:6148/?view=print
http://localhost:6148/?view=print
http://localhost:6148/?view=print
http://localhost:6148/?view=print
http://localhost:6148/?view=print


Ultimately Led to This General
Statisical Toolkit:



Further Questions? Ask our GPT!

https://chatgpt.com/g/
g-67b5de85c6e081919570830a6656a387-ovvo-labs-gpt
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Finance Applications?
You bet!



Stress Testing
• Restrict observations to  and use NNS.reg(),

maintains dependence structure

• Reverse the procedure… instead of what happens to
portfolio if S&P 500 drops 10%, what portfolio returns would
lead to a 10% S&P 500 drop? Distribution of scenarios.

CLPM

https://github.com/OVVO-Financial/Finance/blob/main/stress_test.md

https://github.com/OVVO-Financial/Finance/blob/main/stress_test.md
https://github.com/OVVO-Financial/Finance/blob/main/stress_test.md


Distribution of Losses



Utility Theory
• Markowitz dedicated a quarter of his 1959 book to utility

theory. Was it a waste of time? Absolutely not!

• Each of us has unique risk profiles, costs of capital, and
preferences. Parsing variance to reflect these subjective
interpretations is critical for representing individual
preferences.

• Partial moments are the perfect method to achieve this.
Summary statistics just don’t cut it!



Let’s Revisit Degrees

loss-aversion: 

gain-seeking: 

LPM(n, target, variable) =
1
T

∑
t=1

T

[max(0, target − variabl )]et
n

UPM(q, target, variable) =
1
T

∑
t=1

T

[max(0, variabl − target)]et
q

n

q



Utility Functions

NOBODY is linear  wrt losses!

Risk-aversion  and loss-aversion  are two distinct
preferences

(n = 1)

(n : q) (n)



Utility Embedded Into Covariance Matrix



Matrix Properties
Positive Semi-Definite



Transposes of One Another



Logical Objective Functions

Consistent objective for all risk preferences!



Expected Partial Moments
Longer post and paper link on conditioning returns via entropy
proxies

https://www.linkedin.com/pulse/expected-partial-moments-
fred-viole/
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Other Portfolio “Theories”
• Diversification for its own sake, with no identified utility

function or preference being satisfied.

• Hierarchical Risk Parity (HRP) aims to create portfolios that
are more robust to input variations, avoiding extreme mean-
variance allocations.

• Stochastic Portfolio Theory (SPT) values growth rates but
ignores investor preferences — how you achieve final wealth
matters!



Stochastic Dominant Clusters



SD Clusters vs. HRP OOS



Partial Moments in the Wild
To showcase the effectiveness of NNS in quantitative finance,
I’ve designed the following applications:

• MacroNow nowcasting

• Options

• Portfolio

https://ovvo.shinyapps.io/macronow_intro

https://ovvo.shinyapps.io/options_intro

https://ovvo.shinyapps.io/portfolio_intro
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Macro Forecasts



Options Pricing
An obvious extension is to use UPM for calls and LPM for puts

• Ditches  and  for nonparametric simplicity

• Integrates real-world ( ) shape, adjusts to risk-neutral ( )
directly

N( )d1 N( )d2

P Q



Portfolio Tool



More Informed Dispersion Measures

where  for  index members

R =Dt ( −∑
i=1

N

wi Ri,t RI,t)2

− −−−−−−−−−−−−−−
⎷


=RI,t ∑N
i=1 wiRi,t N

R =DLPM
t ∑

i=1

N

wi[max(0, − )]RI,t Ri,t
2

− −−−−−−−−−−−−−−−−−−−−
⎷


R =DUPM
t ∑

i=1

N

wi[max(0, − )]Ri,t RI,t
2

− −−−−−−−−−−−−−−−−−−−−
⎷




Better Stats to Arb



Follow on LinkedIn

https://www.linkedin.com/company/ovvo-labs/
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